Estimation of Organ Boundaries in Electrical Impedance Tomography

نویسنده

  • M. Vauhkonen
چکیده

In electrical impedance tomography (EIT) the impedance distribution is usually estimated in xed elements inside the object. The implicit assumption is most often that the impedance in each element is more or less independent of the other (neighboring) elements. In many cases, such as in the impedance imaging of the chest, this model might not be a feasible one. An example is the heart muscle and blood, whose impedances do not change but instead the associated volumes depend on the phase of the cardiac cycle. In this paper we propose a method in which the internal organ boundaries are estimated instead of the impedances in some element. The method is based on expressing the boundaries as truncated radial Fourier series and the estimation of the Fourier coeecients with the aid of the associated linearized mapping and the nite element method. The feasibility of the method is shown by tank measurements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applications of Electrical Impedance Tomography in Neurology

Introduction: Electrical impedance tomography (EIT) is a non-invasive technique utilized in various medical applications, including brain imaging and other neurological diseases. Recognizing the physiological and anatomical characteristics of organs based on their electrical properties is one of the main applications of EIT, as each variety of tissue structure has its own electrical characteris...

متن کامل

EM algorithm applied for estimating non-stationary region boundaries using electrical impedance tomography

EIT has been used for the dynamic estimation of organ boundaries. One specific application in this context is the estimation of lung boundaries during pulmonary circulation. This would help track the size and shape of lungs of the patients suffering from diseases like pulmonary edema and acute respiratory failure (ARF). The dynamic boundary estimation of the lungs can also be utilized to set an...

متن کامل

Thorax organ dose estimation in computed tomography based on patient CT data using Monte Carlo simulation

Background:  This study presents patient specific and organ dose estimation in computed tomography (CT) imaging of thorax directly from patient CT image using Monte Carlo simulation.  Patient's CT image is considered as the patient specific phantom and the best representative of patient physical index in order to calculate specific organ dose. Materials and Methods: EGSnrc /BEAMnr...

متن کامل

Modified Impedance-Based OOS Protection Based on On-Line Thévenin Equivalent Estimation

In this paper, a novel approach based on the Thévenin tracing is presented to modified conventional impedance-based out-of-step (OOS) protection. In conventional approach, the OOS detection is done by measuring positive sequence impedance. However, the measured impedance may be change due to different factors such as capacitor bank switching and reactive power compensators that it can cause the...

متن کامل

Electrical impedance tomography

Electrical impedance tomography (EIT) is a noninvasive type of medical imaging in which the electrical conductivity, permittivity, and impedance of a part of the body is inferred from surface electrode measurements and used to form a tomographic image of that part. Electrical conductivity varies considerably among various biological tissues (absolute EIT) or the movement of fluids and gases wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998